Four-dimensional graphene and chiral fermions

Michael Creutz
Brookhaven National Laboratory

Extending graphene structure to four dimensions gives

- a two-favor lattice fermion action
- one exact chiral symmetry
 - protects mass renormalization
- strictly local action
 - only nearest neighbor hopping
- fast for simulations
Graphene electronic structure remarkable

- low excitations described by a massless Dirac equation
 - two “flavors” of excitation
 - versus four of naive lattice fermions
- massless structure robust
 - relies on a “chiral” symmetry
 - tied to non-trivial mapping of S_1 onto S_1

Four dimensional extension

- 3 coordinate carbon replaced by 5 coordinate “atoms”
- generalize topology to mapping S_3 onto S_3
 - complex numbers replaced by quaternions
Chiral symmetry versus the lattice

- Lattice is a regulator
 - removes all infinities
 - symmetries survive quantization

- Classical $U(1)$ chiral symmetry broken by quantum effects
 - a valid lattice formulation must break $U(1)$ axial symmetry

- But we want flavored chiral symmetries to protect masses
 - Wilson fermions break all these
 - staggered require four flavors for one chiral symmetry
 - overlap, domain wall non-local, computationally intensive

Graphene fermions do it in the minimum way allowed!
Carbon and valence bond theory for dummies

Carbon has 6 electrons

- two tightly bound in the 1s orbital
- second shell: one 2s and three 2p orbitals

In a molecule or crystal, external fields mix the 2s and 2p orbitals

Carbon likes to mix the outer orbitals in two distinct ways

- 4 sp3 orbitals in a tetrahedral arrangement
 - methane CH_4, diamond C_∞
- 3 sp2 orbitals in a planar triangle plus one p
 - benzene C_6H_6, graphite C_∞
 - the sp^2 electrons in strong “sigma” bonds
 - the p electron can hop around in “pi” orbitals
Review of graphene structure

A two dimensional hexagonal planar structure of carbon atoms

Held together by strong “sigma” bonds, sp^2

One “pi” electron per site can hop around

Consider only nearest neighbor hopping in the pi system
 • tight binding approximation

- http://online.kitp.ucsb.edu/online/bblunch/castroneto/
Fortuitous choice of coordinates helps solve

Form horizontal bonds into “sites” involving two types of atom
 • “a” on the left end of a horizontal bond
 • “b” on the right end
 • all hoppings are between type a and type b atoms

Label sites by non-orthogonal coordinates x_1 and x_2
 • axes at 30 degrees from horizontal
Hamiltonian

\[H = K \sum_{x_1, x_2} a_{x_1, x_2}^\dagger b_{x_1, x_2} + b_{x_1, x_2}^\dagger a_{x_1, x_2} \]

\[+ a_{x_1+1, x_2}^\dagger b_{x_1, x_2} + b_{x_1-1, x_2}^\dagger a_{x_1, x_2} \]

\[+ a_{x_1, x_2-1}^\dagger b_{x_1, x_2} + b_{x_1, x_2+1}^\dagger a_{x_1, x_2} \]

- hops always between \(a \) and \(b \) sites

Go to momentum (reciprocal) space

- \(a_{x_1, x_2} = \int_{-\pi}^{\pi} \frac{dp_1}{2\pi} \frac{dp_2}{2\pi} e^{ip_1 x_1} e^{ip_2 x_2} \tilde{a}_{p_1, p_2} \cdot \)
- \(-\pi < p_\mu \leq \pi \)
Hamiltonian breaks into two by two blocks

\[H = K \int_{-\pi}^{\pi} \frac{dp_1}{2\pi} \frac{dp_2}{2\pi} \begin{pmatrix} \tilde{a}_{p_1,p_2}^\dagger & \tilde{b}_{p_1,p_2}^\dagger \end{pmatrix} \begin{pmatrix} 0 & z \\ z^* & 0 \end{pmatrix} \begin{pmatrix} \tilde{a}_{p_1,p_2} \\ \tilde{b}_{p_1,p_2} \end{pmatrix} \]

- where

\[z = 1 + e^{-ip_1} + e^{ip_2} \]

\[\tilde{H}(p_1,p_2) = K \begin{pmatrix} 0 & z \\ z^* & 0 \end{pmatrix} \]

Fermion energy levels at \(E(p_1,p_2) = \pm K|z| \)

- energy vanishes only when \(|z|\) does
- exactly two points \(p_1 = p_2 = \pm 2\pi/3 \)
Topological stability

- contour of constant energy near a zero point
- phase of z wraps around unit circle
- cannot collapse contour without going to $|z| = 0$

No band gap allowed

- Graphite is black and a conductor
Hexagonal structure hidden in deformed coordinates
Connection with chiral symmetry

- \(b \rightarrow -b \) changes sign of \(H \)

- \(\tilde{H}(p_1, p_2) = K \begin{pmatrix} 0 & z \\ z^* & 0 \end{pmatrix} \) anticommutes with \(\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)

- \(\sigma_3 \rightarrow \gamma_5 \) in four dimensions

No-go theorem

Nielsen and Ninomiya

- periodicity of Brillouin zone

- wrapping around one zero must unwrap elsewhere

- two zeros is the minimum possible
Four dimensions

Want Dirac operator D to put into path integral action $\bar{\psi}D\psi$

- require “γ_5 Hermiticity”
 - $\gamma_5 D \gamma_5 = D^\dagger$
- work with Hermitean “Hamiltonian” $H = \gamma_5 D$
 - not the Hamiltonian of the 3D Minkowski theory

Require same form as the two dimensional case

$$\tilde{H}(p_\mu) = K \begin{pmatrix} 0 & \hat{z} \\ \hat{z}^* & 0 \end{pmatrix}$$

- four component momentum, (p_1, p_2, p_3, p_4)
To keep topological argument

- extend \(z \) to quaternions

\[
\begin{align*}
\vec{a}_0 + i \vec{a} \cdot \vec{\sigma}
\end{align*}
\]

- \(|z|^2 = \sum_\mu a_\mu^2 \)

\(\tilde{H}(p_\mu) \) now a four by four matrix

- “energy” eigenvalues still \(E(p_\mu) = \pm K|z| \)

- constant energy surface topologically an \(S_3 \)

- surrounding a zero should give non-trivial mapping
Implementation

- not unique
- local action
 - only sines and cosines
 - mimic 2-d case
 \[1 + e^{-ip_1} + e^{ip_2} = 1 - \cos(p_1) - \cos(p_2) - i(\sin(p_1) - \sin(p_2)) \]
- possible choice

\[z = B(4C - \cos(p_1) - \cos(p_2) - \cos(p_3) - \cos(p_4)) + i\sigma_x(\sin(p_1) + \sin(p_2) - \sin(p_3) - \sin(p_4)) + i\sigma_y(\sin(p_1) - \sin(p_2) - \sin(p_3) + \sin(p_4)) + i\sigma_z(\sin(p_1) - \sin(p_2) + \sin(p_3) - \sin(p_4)) \]

- \(B \) and \(C \) are constants to be determined
Zero at $|z| = 0$ requires all components to vanish, four relations

\[
\begin{align*}
\sin(p_1) + \sin(p_2) - \sin(p_3) - \sin(p_4) &= 0 \\
\sin(p_1) - \sin(p_2) - \sin(p_3) + \sin(p_4) &= 0 \\
\sin(p_1) - \sin(p_2) + \sin(p_3) - \sin(p_4) &= 0 \\
\cos(p_1) + \cos(p_2) + \cos(p_3) + \cos(p_4) &= 4C
\end{align*}
\]

- first three imply $\sin(p_i) = \sin(p_j)$ $\forall i, j$
 - $\cos(p_i) = \pm \cos(p_j)$
- last relation requires $C < 1$
- if $C > 1/2$, only two solutions
 - $p_i = p_j = \pm \arccos(C')$
As in two dimensions

- expand about zeros
- identify Dirac spectrum
- rescale for physical momenta

Expanding about the positive solution

- $p_\mu = \tilde{p} + q_\mu$
- $\tilde{p} = \arccos(C)$
- define $S = \sin(\tilde{p}) = \sqrt{1 - C^2}$
The quaternion becomes

\[z = BS(q_1 + q_2 + q_3 + q_4) \]
\[+ iC\sigma_x(q_1 + q_2 - q_3 - q_4) \]
\[+ iC\sigma_y(q_1 - q_2 - q_3 + q_4) \]
\[+ iC\sigma_z(q_1 - q_2 + q_3 - q_4) + O(q^2) \]

Introduce a gamma matrix convention

\[\tilde{\gamma} = \sigma_x \otimes \vec{\sigma} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix} \]
\[\gamma_4 = -\sigma_y \otimes 1 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \]
\[\gamma_5 = \sigma_z \otimes 1 = \gamma_1\gamma_2\gamma_3\gamma_4 = \text{diag}(1, 1, -1, -1) \]
The Dirac operator becomes

\[\tilde{D} = C(q_1 + q_2 - q_3 - q_4)i\gamma_1 \]
\[+ C(q_1 - q_2 - q_3 + q_4)i\gamma_2 \]
\[+ C(q_1 - q_2 + q_3 - q_4)i\gamma_3 \]
\[+ BS(q_1 + q_2 + q_3 + q_4)i\gamma_4 + O(q^2) \]

Reproducing the Dirac equation if we take

\[k_1 = C(q_1 + q_2 - q_3 - q_4) \]
\[k_2 = C(q_1 - q_2 - q_3 + q_4) \]
\[k_3 = C(q_1 - q_2 + q_3 - q_4) \]
\[k_4 = BS(q_1 + q_2 + q_3 + q_4) \]
Position space rules from identifying $e^{\pm ip}$ terms with hopping

- on site action: $4iBC\bar{\psi}\gamma_4\psi$
- hop in direction 1: $\bar{\psi}_j(+\gamma_1 + \gamma_2 + \gamma_3 - iB\gamma_4)\psi_i$
- hop in direction 2: $\bar{\psi}_j(+\gamma_1 - \gamma_2 - \gamma_3 - iB\gamma_4)\psi_i$
- hop in direction 3: $\bar{\psi}_j(-\gamma_1 - \gamma_2 + \gamma_3 - iB\gamma_4)\psi_i$
- hop in direction 4: $\bar{\psi}_j(-\gamma_1 + \gamma_2 - \gamma_3 - iB\gamma_4)\psi_i$
- minus the conjugate for a reverse hop

Notes

- a mixture real and imaginary coefficients for the γ’s
- γ_5 exactly anticommutes with D
- D is purely anti-Hermitean
- γ_4 not symmetrically treated to $\bar{\gamma}$
The \(k \) coordinates should be orthonormal

- the \(q \)'s are not in general

\[
\frac{q_i \cdot q_j}{|q|^2} = \frac{B^2 S^2 - C^2}{B^2 S^2 + 3C^2}
\]

If \(B = C/S \) the \(q \) axes are also orthogonal

- allows gauging with simple plaquette action

- Borici: \(B = 1, C = S = 1/\sqrt{2} \)
Alternative choice for B and C from graphene analogy

- extend Brillouin zone to include neighboring zones
- zeros of z in momentum space form a lattice
- give each zero 5 symmetrically arranged neighbors
 - $C = \cos(\pi/5), \ B = \sqrt{5}$
 - interbond angle θ satisfies $\cos(\theta) = -1/4$
 - $\theta = \arccos(-1/4) = 104.4775\ldots$ degrees
- 4-d generalization of the diamond lattice
The physical lattice structure

Graphene: one bond splits into two in two dimensions

- $\theta = \arccos(-1/2) = 120$ degrees

Smallest loops are hexagons
Diamond: one bond splits into three in three dimensions

- tetrahedral environment
- $\theta = \arccos(-1/3) = 109.4712\ldots$ degrees

iterating

- smallest loops are cyclohexane chairs
4-d graphene: one bond splits into four
- 5-fold symmetric environment
- $\theta = \cos(-1/4) = 104.4775 \ldots$ degrees

iterating

- smallest loops are again hexagonal chairs
Issues and questions

Requires a multiple of two flavors
• can split degeneracies with Wilson terms

Only one exact chiral symmetry
• not the full $SU(2) \otimes SU(2)$
 • enough to protect mass
 • π_0 a Goldstone boson
 • π_{\pm} only approximate

Not unique
• only need $z(p)$ with two zeros
• Borici’s variation with orthogonal coordinates
• $C = \cos(\pi/5)$, $B = \sqrt{5}$
 • approximate 120 element “pentahedral” symmetry
192 element hypercubic symmetry group reduced to 48 elements

- natural time axis along major hypercube diagonals
- 24 element tetrahedral symmetry in space
 - permutations of links in positive direction
 - half of these elements have negative parity
- time reversal exchanges positive and negative links
- $2 \times 24 = 48$ element discrete symmetry group
- $O(a^2)$ corrections to Euclidian symmetry
 - Cichy, Gonzalez Lopez, Jansen, Kujawa, Shindler
Additional parameters to tune? Bedaque, Buchoff, Tibursi, Walker-Loud

- no full space-time symmetry
 - speed of light for fermions and gluons may differ
 - general gauge action requires both 4 and 6 link terms
- for $BS = C$ four link terms should be adequate
- $C = \cos(\pi/5)$, $B = \sqrt{5}$
 - approximate “pentahedral” symmetry
 - 4-d generalization of diamond
 - should constrain 6 link terms
Zero modes from gauge field topology only approximate

- the two flavors have opposite chirality
- their zero modes can mix through lattice artifacts
- similar to staggered, but 2 rather than 4 flavors

Comparison with staggered

- both have one exact chiral symmetry
- both have only approximate zero modes from topology
- four component versus one component fermion field
- two versus four flavors
 - no uncontrolled extrapolation to two physical light flavors
Summary

Extending graphene and diamond lattices to four dimensions:

- a two-flavor lattice Dirac operator
- one exact chiral symmetry
 - protects from additive mass renormalization
 - eigenvalues purely imaginary for massless theory
 - in complex conjugate pairs
- strictly local
 - should be very fast to simulate